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A procedure to construct stationary axisymmetric solutions of the Jordan-Brans- 
Dicke field equations with electromagnetic sources is obtained solutions, since 
they are "compositions" of Weyl static solutions with the given stationary ones, 
are equipped with several parameters, as many as one wishes. 

1. I N T R O D U C T I O N  

The main  purpose  o f  this work is to give the explicit expressions o f  
certain families o f  s tat ionary axisymmetr ic  solutions (SAS) o f  the J o r d a n -  
Brans -Dicke  (JBD) field equat ions coupled  with the Maxwell  (M) 
equations.  

Acord ing  to a theorem by Garcfa  D. (1986), any SAS of  the J B D + M  
field equat ions  

R~b = 8zrTobc~ -1 -- ~o~b-2&;ob;b - ~b-l&;o, b 

4~'Tab := s 1 r s  Fa Fsb + agabF Frs 
;a ab t h ; o = 0 =  F;b (1) 

can be obta ined  by " c o m p o s i n g "  SAS o f  the Eins te in-Maxwel l  (EM) 
equat ions with solutions o f  the static vacuum Weyl class. The metric for  
SAS of  the J B D + M  field equat ions is given by 

g : e - Z U { f - l [ e 2 ~ ( d p 2  q_ da2) _[_ p2 d~2]  - f ( d t  - W d ~ )  2} 
(2) 
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with the set of  structural functions f, % W and the associated electromagnetic 
t 4, vector potential field A.(p, z) = 6~A, + 6~A4, is any solution of the standard 

Einstein-Maxwell  (EM) field equations, while the set of  U and k is any 
solution of  the equations for static vacuum Weyl metric, namely, 

and 

a u :  u , ,  +p- 'u , ,  + u ~  =o 

k = I {2pU'~ U'z dz + pE(U")2- (U'z)2] dp} 

(3) 

(4) 

this last relation being integrable by virtue of  equation (3). 
The Weyl solutions to be considered are the set of  asymptotically fiat 

Legendre polynominals  solutions, and the S(A, b, c/m) Plebafiski (1980) 
solutions. This last class of  solutions contains as particular cases, among 
others, the Kasner  (1921) metric S(a, O, O/m) and the Zipoy (1966)-Voor- 
hees (1970) solutions S(O, 6, O/m). 

In Section 2 we present a family o f J B D  + M solutions having as "seed" 
SAS the K e r r - N e w m a n  (KN) metric (Newman et aL, 1965). 

In Section 3, SAS of the J B D +  M theory having as seed metric the 
charged Tomimatsu-Sa to  (c-TS) solution (Ernst, 1973) are given. 

2. A FAMILY OF J B D - K E R R - N E W M A N  METRICS 

The K e r r - N e w m a n  solution in Weyl canonical coordinates in the 
Lewis-Papapetrou form is given by 

g = f - l  [ A (da2 + dp2)+ p2 d~b2 ] 
( r  - m) 2 - m 2 cos 2 0 

2mr_e 2 \2 
- f  d t -  a sin 2 0 - - - - - : ~  d~p] 

/ A  / 

f _  

A4, = 

A 
r 2 +  a 2 c o s  2 0 ' 

ear sin 2 0 

r2+a 2 cos 2 0 ' 

A :=  ( r -  m ) 2 +  a 2 c o s  2 0 +  e 2 -  m 2 

e r  

A t -  r 2 ~  - a2 cos2 0 ' 

M 2 := rn 2 -  e 2 - a 2 (5) 

where r and 0 are the standard (r, 0) Boyer-Lindquist  coordinates related 
to the (p, z) Weyl coordinates according to 

p = s i n  O[(r-m)2-M2] 1/2, z = ( r - m )  cos 0 (6) 
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o r  

( r  --/9"/) 2 -- l (p2  ~_ z2 ..~_ m 2) + l[(p2..{_ z2 ..]_ M2)2  _ 4 M 2 z 2 ] l / 2  
(7) 

O=arccos[z/(r-rn)], m2: = m2-eZ-a z 

Comparing the metric (5) with the Lewis-Papapetrou one, i.e., the g 
from (2) with U = 0 = k, one readily obtains the explicit form of  exp(2y) 
and W, which are just the functions which multiply (dz2+dp 2) and d6, 
respectively. 

We shall "compose"  the KN metric (5), according to the rule given in 
the metric (2), with the set of asymptotically flat Legendre polynomial 
solutions. 

The Legendre polynomial solutions arise as variable separable solutions 
of equations (3) written in spherical coordinates 

p = R sin O, z = R cos 0 (8) 

[we are using 0 here to distinguish it from the 0 appearing in (5)-(7)]. 
The general class of asymptotically flat Legendre polynomial solutions 

(Kramer et al., 1980) is given by 

U= ~ a.R-("+~)P.(cos O) 
n=O 

(9) 
( 1 + 1 ) ( m + 1 )  k = -  ~ a i a , , ,  R-(I+'~+2)(PtP,.-P~+IPm+O 

~,,,=o ( l + m + 2 )  

where Ps := Ps(cos 0) are Legendre polynomials, and as are arbitrary pa- 
rameters. 

Combining the structural functions according to formulas (2), one 
obtains a class of  JBD + M solutions with an infinite number of parameters; 
when they are equated to zero, the derived metric reduces to the standard 
Kerr -Newman metric. 

3. A CLASS OF JBD-CHARGED-TOMIMATSU-SATO 
SOLUTIONS 

In this section we derive a class of charged JBD solutions using as 
seed stationary axisymmetric metric the c-TS solution (Ernst, 1973) and as 
Weyl solutions the S(a, b, c/m) Plebafiski (1980) metric. 

To give in a concise form the c-TS solution, we introduce the following 
definitions 

u2:=x2-1, v2:= 1 - y  2 , SA := sin A, CA := cos A, Q2:= l - q 2  
(10) 
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with 

The c-TS line element can be written as 

g = f - l [ e 2 y ( x 2 _ y 2 ) { d x 2 + d y 2 ~  +/,/2/)2 d~j2] - f (d t -  Wd~y) 2 
\ u 2 v 2 / 

(11) 

where 

N = x4CA2+y4SA2- 1 - 2 i x y ( x  2 -y2)CASA 

D = 2xu2CA -2iyv2SA (15) 

In formula (14), a is an arbitrary phase related to a duality rotation. 
We point out that the electromagnetic field tensor and the stress energy 

tensor may be expressed entirely in terms of the Ernst complex potential 
~b, as was observed by Ernst (1974). In fact, in the Weyl coordinate chart 
{p, z, qJ, t} related with the spheroidal prolate coordinates {x, y, ~0, t} accord- 
ing to 

p 2 = ( x a - 1 ) ( 1 - y 2 ) ,  z = x y ,  ~b=~, t = t  (16) 

the nonvanishing components of the field tensor F~ are given by 

F~ = - f - l a , ,  z + W,~l,o/p , V~ = ~ ,o /P 
(17) 

, = - 1 A  Fo - f  t,p- W~,z/P, V~ = --~,z/P 

Following the rule given in formula (2), we shall "compose" the above 
charged TS solution with the structural functions of the S(a, b, c~ m) metric. 

f =  A / B ,  W = 4Cv2SA/(AQCA) 
(12) 

exp 2y = A[(x 2 -  y2) CA ]-4 

where the functions A, B, and C are given by 

A = (u4CA2 + l)4SA2)Z4u2v2(x 2 -yZ)2cA2sA2 

B = (x4CA2+y4SA 2 -  1 +2xu2CA/Q) 2 

+ 4Ix (x 2 - y 2 )  CA + v2/O]2y2SA 2 

C = �89 + 1/Q){u2CA2[u2v 2 - 4x2(x 2 _y2)] + v6SA 2} 

-xCA{CA2u2[2(x4-1)  + vZ(x2 + 3)] - v6SA 2} (13) 

In these expressions A and q are arbitrary real parameters associated, 
respectively, with the specific angular momentum and the charge-to-mass 
ratio. 

The complex scalar electromagnetic potential is given by 

�9 (E) := At + i~/= qei~D/(D + NQ)  (14) 
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The line element of the S(A, b, c/m) solutions can be written as 

m - 2 g = e  -2t; e2k(x2--y2)\ it2 122] + dO 2 -e2V dt2 

where 

(18) 

exp(2 U) = ( x +  1)-(~+b)(X -- 1)b-a(1 +y)-(a+c)(1 _y)C-~ 

exp(2k) = (x + y)-(b+c)2(x -- y)-(b-c)2(X + 1) (a+b)2 
(19) 

• (x - 1)(a-b)2(1 + y)(a+c)2(1 _ y)(a-c? 

U2:= X2-- 1, V2:= 1--y 2 

where a, b, and c are arbitrary dimensionless parameters, and m is a constant 
of  length dimension. 

Substituting all the required structural functions in the metric (2), one 
arrives at a certain class of JBD-charged-TS solutions. Particularly interest- 
ing is the set of solutions with the structural functions of the S(0, 8, O/m) 
metric, i.e., the asymptotically flat Zipoy-Voorhees solutions, which reduce 
to the well-known Schwarzschild solution when 6 -- 1. 

Moreover, one may compose the c-TS solution with the asymptotically 
flat Legendre solutions given by formulas (9) simply by taking into account 
that 

g 2= (ut~)2 d- (xy) 2, tan 0 =  (uv)Z/(xy) (20) 

On the other hand, one may obtain a new class of JBD solutions by 
"composing" the Kerr -Newman metric (5) with the S(a, b, c/m) solution. 
To do so, one needs to rewrite the structural functions of the S(a, b, c/m) 
in terms of  the p and z variables or give the KN solution in terms of  the 
x and y variables. The relation between these sets of variables is given in 
(16). Notice that the Boyer-Lindquist  r and 0 are related to x and y 
according to r - m = xM, cos 0 = y. 

Since equation (3) for the function U is a linear one-- the  Laplace 
equat ion- -one  may linearly superpose any number of independent solu- 
tions, obtaining in this manner enlarged sets of solutions, for instance, the 
general Legendre polynomial (asymptotic and nonasymptotic) solutions 
coupled with the structural function U of the S(a, b, c/m) or with the 
multiexponent Weyl U potential (Plebafiski and Garcfa, D., 1982). The 
structural function k in all cases will be certainly integrable. 

4. C O N C L U D I N G  R E M A R K S  

The procedure presented and used here can be applied to any stationary 
axisymmetric Einstein-Maxwell solution, in particular to static and vacuum 
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ones ,  to g e n e r a t e  a n  in f in i t e  class of  so lu t i ons  in  the  J o r d a n - B r a n s - D i c k e  
theory .  I n  d o i n g  so, o n e  has  to restr ict  o n e s e l f  to so lu t i ons  w h i c h  m a y  b e a r  
a p h y s i c a l l y  r e l evan t  i n t e rp r e t a t i o n .  
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